
wf24 report

Bui Hong Duc
nvmdava

Nyamdavaa Amar

rama_pang
Rama Aryasuta Pangestu

September 2024

1 Preparation
We do a few contests for practice.

Anecdote: we need to find contests whose difficulty is roughly the same as
that of WF — UCup (Universal Cup) is often too hard, while anything else is
often too easy — so we come up with a few methods:

• make a userscript to hide the actual problems solved while looking at the
scoreboard, essentially to find out the number of problems solved by top
teams.

• then the difficulty of the problem set can be roughly judged by how many
problems the X-th team solved during the contest.

• remember to include virtual participants, because some contests may only
have weaker teams — which would lead to unreasonably easy contest.

• one way to measure the difficulty is to find out if there are other ICPC
WF teams (from universities which regularly gets medal) who have done
the contest, and judge the difficulty based on their performance.

Overall, we did like 4 to 5 (?) contests in person, and 4 contests online on
weekends after nvmdava went to London. Practicing online sometimes leads
to low morale (some members of the team often fell asleep if alone), but in 2
person practice (without nvmdava, that is) our performance doesn’t suffer much.
Judging based on practice performance, we are somewhat hopeful that medal is
possible if everything goes well.

We prepare the TRD very last minute, cramming centroid decomposition
and weighted general matching last minute before the deadline. Then we stay
at COM until almost 11pm (last bus) to print the notebook. rama_pang buys
some file folder to contain it (sorry)

Our final notebook can be found at https://github.com/rama-pang/icpc
-trd/releases/tag/icpc-wf-2024.

1

https://contest.ucup.ac/
https://github.com/rama-pang/icpc-trd/releases/tag/icpc-wf-2024
https://github.com/rama-pang/icpc-trd/releases/tag/icpc-wf-2024

We got a little funny issue where rama_pang tries to include “cutting edge”
(C++20) techniques (e.g. zip() and enumerate()), but I decide they’re not
worth the time spent typing them and throw them out. Though this deep-dive-
ish to C++20 std::ranges features end up being somewhat slightly useful to
type binary search faster in contest...

We retain YComb (as always) and included a more generic operator<< and
operator>> for “ranges” (vector, tuple, pairs, array, set, map, and so on which
is a std::ranges::range) though (though we didn’t type this in contest).

2 Before the contest
We have two chances to get used to the keyboard — one during ICPC Huawei
Challenge, and another during Dress Rehearsal. This was quite helpful to get
typing speed up on an unfamiliar keyboard.

During Dress Rehearsal, we noticed that all the samples are conveniently
downloaded to ˜/Desktop/samps/ for us, so we just move it to the home
directory. We also noticed that the interactive problem conveniently has a
testing_tool.py, which is very helpful for debugging in the actual contest.

Post-contest, it turns out there are quite a few teams who didn’t notice
the existence of testing_tool.py for the interactive problem (Problem L),
which might contribute to the low number of solves as it’s quite inconvenient to
test the problem manually and implementation heavy to implement your own
“interactor”.

3 During the contest
(written with Hong Duc in the first person voice)

As usual, we start with me reading from the front, rama_pang reading from
the back, and nvmdava typing the template. I read problem A, recall that it
comes from CS4261, but did not immediately recall the solution. I move to B,
worked on it for some 10 minutes and solve it.

I modify the .vimrc template a bit to read the input file from %:r/1.in
instead of i. It took a bit of vim documentation lookup to figure out I need :r.

Then rama_pang takes over the computer to implement F. Meanwhile nvmdava
tries to solve problem E, but it is actually more complicated than it looks. He
tries to explain the idea to me, and I note that we need some sort of knapsack
built in the solution, which might be done by digit-by-digit DP. But a rough
calculation of time complexity shows digit-by-digit DP might be too slow, so we
give up on it.

rama_pang got the idea for problem I (some tricky and prone-to-edge-cases
dynamic programming) and started implementing, but I notice problem C is
relatively simple, so I interrupt rama_pang to implement it. After problem C is
accepted, rama_pang continued implementing problem I and got accepted.

2

Afterwards, because we have no solved problems, I recall the solution from
CS4261, go ahead and implement problem A. nvmdava and rama_pang works
on problem D (I previously read the statement but did not come up with any
good idea), and after some time they come up with the solution.

Meanwhile I got into a little trouble because the straightforward implemen-
tation has too large time complexity. I need to comment out something like 50
lines of code (?), implement the two pointer idea and submit.

Unfortunately this gets TLE, so I give up the computer for rama_pang to
implement D (which got AC quite quickly). After calculating the time com-
plexity I see that the binary search is called too many times, then I derive the
closed-form formula (solve a quadratic equation) and code it in. There’s a cor-
ner case where the quadratic equation degenerates to a linear equation which
needs to be taken care of, but fortunately I notice the issue early.

At this point rama_pang has some ideas on problem J (some implementation-
heavy dynamic programming in segment tree states) and problem L (some
implementation-heavy interactive problem), and decided to go for L.

Next, rama_pang works on L while we try to come up with ideas for H and K
on paper. Initially some of us misread the statement of H (that the demon can
move along the wall, which is not the case). When the demon still cannot move,
it simplifies the problem significantly, and after some further simplification we
reduces it to a Gaussian elimination of a 400×40000 matrix modulo 2. . . which
sort of fits in the time limit, or so we think until we realize the large dimension
might be up to 16000000, which definitely won’t fit.

We had a little debate whether to implement it anyway (for all we know the
number of distinct points possible may not be that large) or put it off, I decide
to put it off because it’s too risky.

Meanwhile, rama_pang generates a test case by hand, and the answer appears
to be wrong. I tell rama_pang to look at our idea for problem H, while I debug
his code. After some debug printing, I notice that the answer on the generated
test case is actually correct.

1 5
..#.#
1 1 N

The printed answer by the program is “no”, I realize this is because the first
region has rotational symmetry. We just submit the solution, but unfortunately
we get WA.

rama_pang mentions something to the effect of “maybe a 3× 3 square. . . ?”,
and I quickly realize that the problem is rotational symmetry does not neces-
sarily kills the hope of determining the location — you just need to move to the
center.

3 3
...
...

3

...
1 1 N

Then I work out how to modify the code to detect that case as well as
optimizing the number of steps needed in the DFS phase, and rama_pang im-
plements the path-finding with BFS.

We try to generate some other test cases by hand, such as

5 5
.....
.###.
.#.#.
.###.
.....
1 1 N

after everything passes, we submit and got another AC. Before getting the AC,
I decide to print out the solution because “print delivery is so slow, might as
well print in case it WA” — turns out this would be unnecessary.

(Actually I’m not sure if we ever printed J (the whole problem was handled
by rama_pang), but we did print L like that.)

rama_pang continues to implement J while me and nvmdava discusses solu-
tion for K. nvmdava knows how to use dynamic programming, which helps with
coming up with the solution. I proceed to implement it after rama_pang is done
with problem J — turns out this would be our last AC in the contest.

There was quite a few corner cases for problem K — namely, what if the
first pile is empty, what if the third pile is empty, what if the state after the
big "move" is actually valid — but fortunately we notice these quickly. We
implement it but got WA anyway.

nvmdava meanwhile tries to work on it on the background, and notice another
corner case. Unfortunately this is not sufficient to get AC.

In the end, we print out our solution, intending to debug it later.

4 After the contest
In total, I solved A+B+C+(half of L), rama_pang solved (half of D)+F+I+J+(half
of L), nvmdava solved half of D, and tried to work on E, H, and K. E is unfor-
tunately a difficult problem that is deceptively easy. nvmdava tried to explain
to me the idea within the contest, but I think it’d need at least digital DP to
solve the knapsack part — and even that doesn’t fit in the time limit. I feel
nvmdava’s idea for K sounds correct, but unfortunately we did not manage to
implement it during contest.

4

Figure 1: Scoreboard before freeze. Can also be found in https://web.archiv
e.org/web/20240919110101/https://scoreboard.icpc.global/2024/scor
eboard/.

Over the course of the first four hour of the contest, we managed to con-
sistently stay in medal range, with the scoreboard ending up looking as above.
After calculating the penalty difference to other teams, Prof. Steven was quite
confident that we get at least a medal.

On the closing ceremony, it turns out we managed to get Rank 6 — a silver
medal. This is the first ICPC WF medal gained by NUS after two decades of
trying, and also the second ICPC WF medal and first silver medal gained by
any university in South East Asia (the first medal being a bronze medal by
University of Engineering and Technology — VNU at ICPC WF 2021, which
was Hong Duc’s old team).

5

https://web.archive.org/web/20240919110101/https://scoreboard.icpc.global/2024/scoreboard/
https://web.archive.org/web/20240919110101/https://scoreboard.icpc.global/2024/scoreboard/
https://web.archive.org/web/20240919110101/https://scoreboard.icpc.global/2024/scoreboard/

Figure 2: Final scoreboard.

A few days after contest, it turns out that we missed problem K by a few
lines. Another team which has the same idea as nvmdava for problem H also
managed to get accepted post-contest (their team got TLE in contest due to
missing a slight optimization nvmdava mentioned).

6

	Preparation
	Before the contest
	During the contest
	After the contest

